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Abstract

Studies using self-report data have shown that emotion is related to non-suicidal
self-injury (NSSI). However, the specific roles of emotion in the initiation and
continuation of this type of behavior remain unmapped. This study conducted a
sentiment analysis of social media posts to map the emotional trajectory of NSSI
behavior in China. We collected data from 462,287 social media posts by 398 fe-
males who disclosed their NSSI behavior on Weibo, mainland China’s most popu-
lar social media platform. Using a lexicon-based sentiment analysis approach, we
assigned sentiment scores to each post at the person-per-date level, then subjected
these scores to latent growth modeling to map the emotional trajectory of NSSI
behavior. During the four days preceding NSSI disclosure, the Weibo users showed
significant increases in arousal (f = .317; p = .014), positive emotions (f = .175;
p = .022), and negative emotions (f = .805; p = .032). During the four days fol-
lowing NSSI disclosure, they experienced significant decreases in positive emotions
compared with the preceding four days (diff; = .318; p = .003), with no significant
changes in negative emotions or arousal. Our findings indicated that the levels of
arousal, positive emotions, and negative emotions all rose in the four days pre-
ceding NSSI disclosure. However, contrary to the common notion that NSSI may
improve mood, our results showed that positive emotions decreased following the
disclosure.
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1 Introduction

“People assume you aren’t sick unless they see the sickness on your skin” [1].

Non-suicidal self-injury (NSSI), which typically manifests as skin wounds caused
by cutting, carving, or scraping [2], refers to the deliberate destruction of one’s own
body tissue without any intention of dying [3]. NSSI behavior has long been a public
health issue, particularly in mainland China, which is home to the world’s second-
largest national population. In a study of 17,622 mainland Chinese adolescents and
young adults, 17% of the participants reported that they had self-injured during the
previous year [4], a slightly higher figure than that reported for Western samples
(15%; see [5]). A meta-analysis of findings published in Chinese reported a signifi-
cantly higher NSSI rate among females (18%) than males (16%) [6]. However, most
NSSI studies have focused on Western samples, leaving the Chinese (female) popula-
tion understudied. Using a large sample of Chinese females who disclosed their NSSI
behavior on a social media platform, we sought to map the emotional trajectory of
NSSI behavior.

2 Emotion and NSSI

To address the public health concern of destructive NSSI behavior, researchers have
investigated its underlying mechanism and identified emotion as a pivotal factor.
Nock and Prinstein [3] proposed that NSSI behavior can serve as an emotion regula-
tion strategy (e.g., to alleviate unpleasant feelings or generate desired feelings) and as
an interpersonal tool (e.g., to seek help or avoid negative social interactions). Other
researchers have focused on the impact of different emotions on NSSI behavior. The
affect regulation model suggests that NSSI may be a strategy to alleviate negative
emotions or emotional arousal [7, 8], while the sensation seeking model considers
NSSI a way to generate positive emotions such as excitement or exhilaration [9].

These models primarily concentrate on the valence of emotions, which they cate-
gorize as either positive or negative. However, according to the circumplex model of
emotion [10, 11], emotions are structured along two dimensions: valence (i.e., pleas-
antness versus unpleasantness) and arousal (i.e., activation versus deactivation). In
most NSSI research, the arousal dimension has been largely overlooked. As arousal
refers to a sense of mobilization and energy [12, 13] and NSSI involves physical
action, it is reasonable to suspect that arousal plays an important role in NSSI behav-
ior. In this study, we investigated the trajectories of positive emotion, negative emo-
tion, and emotional arousal in the context of NSSI behavior.

3 Previous findings
Several studies have investigated the association between NSSI and emotions. Using
cross-sectional designs, the emotional functions of NSSI behavior have been care-

fully investigated and documented (see [14, 15]). For example, using the Functional
Assessment of Self-Mutilation framework [16], a widely used scale for assessing the
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functions of NSSI, NSSI behavior has been shown to increase desired feelings (e.g.,
“to feel something, even if it is pain”) and decrease undesired feelings (e.g., “to stop
bad feelings”) [17-19]. However, cross-sectional designs have been criticized for
their inability to examine the daily and dynamic emotional experiences of those who
engage in NSSI behavior, while their reliance on self-reports makes them susceptible
to recall bias and response bias [20, 21].

To capture the unfolding of real-time emotions experienced during NSSI behav-
ior, researchers have relied on diary studies. Although the focus of such studies has
differed (e.g., specific emotions or general positive/negative emotions), most diary
studies have reached a similar conclusion: individuals experience a high level of
negative emotions before engaging in NSSI behavior [14]. This finding implies that
individuals engage in NSSI to cope with negative emotions, as hypothesized by the
affect regulation model [7, 8]. However, no consistent conclusions have been drawn
regarding post-NSSI emotions. Some studies have reported increased positive emo-
tions [22, 23], while others have reported decreased positive emotions [24] or no
clear pattern [25].

In summary, research has yielded inconsistent findings regarding the types of emo-
tions experienced following NSSI behavior. More evidence is thus required to map
the consequences of NSSI behavior. Although diary studies are valuable for gaining
insights into the detailed emotional experiences of those who engage in NSSI behav-
ior, a growing concern is the high frequency of intrusive daily assessments required.
These may cause discomfort, particularly for emotionally disturbed individuals [26].

4 The present study

Over the last decade, the use of social media has grown considerably [27]. This has
enabled individuals to share or report their daily activities, including NSSI behavior,
through text and images [28]. Social media have provided useful platforms for exam-
ining NSSI non-intrusively [29], while minimizing response distortion and recall
bias. However, previous research has focused only on the potential risks and benefits
associated with exposure to or sharing of NSSI-related content on social media [30,
31]. Meanwhile, research on the emotions associated with NSSI behavior, and par-
ticularly the trajectory of such emotions, is lacking.

In this study, we explored the emotions associated with NSSI behavior in a large
sample of Chinese females in natural settings. By analyzing their spontaneous emo-
tional expressions in social media posts, we conducted a non-intrusive investiga-
tion of the emotional experiences and expressions of females who have engaged in
NSSI behavior. Specifically, we wished to (1) describe individuals’ linguistic pat-
terns of expression when disclosing their NSSI behavior on social media; (2) depict
individuals’ daily emotional trajectories throughout the month preceding their NSSI
disclosure; and (3) compare the short-term emotional changes in the four days pre-
ceding and four days following their NSSI disclosure. Regarding short-term emo-
tional changes, we expected that (1) emotional arousal and negative emotions would
increase before the NSSI disclosure but decrease after the disclosure [22, 25, 32] and
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(2) positive emotions would decrease before the NSSI disclosure but increase after
the disclosure [22, 23].

5 Method
5.1 Data collection strategy

To examine the emotional experiences and expressions of individuals who engage in
NSSI, we analyzed posts by Chinese females who disclosed their NSSI on Weibo.
Specifically, we used keyword searching to scrape NSSI-related Weibo posts from 1
March to 1 October 2023. We identified and traced the publishers of these posts, then
extracted all the public posts and profiles from identified female users who disclosed
their NSSI on Weibo using a custom Python crawler. Finally, a lexicon-based senti-
ment analysis assigned arousal and valence scores to each post at the person-by-date
level.

5.2 Data scraping

We collected posts by female users who publicly disclosed their NSSI on Weibo, the
most popular social media platform in mainland China [33]. A Python-based crawler
program searched for posts containing the Chinese keywords “#%” (a homonym
of NSSI) and “E|F" (cutting the wrist),! published between 1 March to 1 October
2023. This search yielded 13,483 posts. We reviewed these posts to identify those
constituting the initiation, processing, and/or completion of an NSSI event, or to
determine the specific date on which the NSSI event occurred. We categorized posts
that fit any of these criteria as an NSSI disclosure (see [34]). From these 13,483 posts,
we identified 530 users who posted one distinct NSSI disclosure event. To ensure a
minimum threshold of posts for analysis (at least 100 posts, as recommended by [35])
while excluding potential chatbot accounts, we applied specific criteria. We excluded
132 users whose previous posts were not publicly accessible or whose accounts dis-
played an unusually high or low number of posts. Specifically, we excluded accounts
with post counts exceeding two standard deviations from the mean of 1729, which
translated to more than 5829 posts or fewer than 100 posts (see [37]). Ultimately, we
analyzed 462,287 posts from 398 users. On average, each user published 1,162 posts
(ranging from 109 to 5,245) during the data collection period. The mean length of
time since account registration was 1,684 days (ranging from 92 to 5,138 days).

5.3 Data cleaning

Before assigning sentiment scores to the posts, we conducted data cleaning. For sen-
timent analysis, we retained only the content generated by the 398 target users, and
removed noise such as hyperlinks, usernames, and tags [38]. Appendix A provides
further details.

'We did not search for the keyword “[44%” (NSSI in Chinese) as its use is not allowed on Weibo [36].
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5.4 Sentiment analysis

After data cleaning, we used a lexicon-based approach to assign arousal and valence
scores to the post texts at the person-per-date level. That is, for each user, on each
specific date, we aggregated the emotional scores of all their posts from that day. We
then applied the Chinese Sentiment Lexicon for Internet 2.0 (CSLI 2.0), which was
developed based on a Weibo corpus [39]. CSLI 2.0 includes 10,164 Chinese words,
each with an arousal score ranging from 0 (low arousal) to 8 (high arousal), and a
valence score ranging from —4 to 0 (negative emotion) and from 0 to 4 (positive emo-
tion) (e.g., “MES2” [feeling bad]: arousal score = 3.714; valence score =—2.571). For
word tokenization we used Jieba, for the custom lexicon we imported CSLI 2.0, and
for the stopword list we imported the Harbin Institute of Technology Stopwords List.
Consistent with previous studies [22, 23, 40], we separated the valence score into
distinct positive and negative emotions when depicting emotional trajectory [41, 42].

5.5 User profiles

For user identification, we collected publicly available profile data from the 398
Weibo users included in the study, including user ID, gender, region, and username.
Recognizing that high-frequency internet use may lead to negative mental health out-
comes [43], we included the total number of user posts and account registration time
as control variables in the latent growth modeling analysis, consistent with previous
research [44, 45]. These variables served as proxies for the degree of social media
use.

6 Data analysis strategy
6.1 Descriptive statistics and visualization

To provide an overview of the distribution of emotions contained in the collected
posts, we created an emotion map using RStudio with R version 4.3.1 [46] to visual-
ize the distribution of arousal and valence scores. To illustrate the linguistic pattern of
expressions used by individuals when disclosing their NSSI behavior, we generated
a word cloud displaying the most frequently used words in NSSI disclosures using
the Wordcloud package in Jupyter Notebook with Python 3.0. To depict individu-
als’ daily emotional trajectories, we generated time-series plots for arousal, positive
emotions, and negative emotions for one month preceding NSSI disclosure (see [47])
using RStudio with R version 4.3.1 [46].

6.2 Latent growth modeling
To compare the short-term emotional changes before and after NSSI disclosure,
we used Mplus Version 8.10 [48] to fit two symmetrical latent growth models. One

model captured the four days preceding the NSSI disclosure, and the other captured
the four days following disclosure. The four-day window was chosen because time-
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series plots indicate a low point on the fourth day (see [49, 50]). We applied these two
latent growth models to arousal, positive emotions, and negative emotions. Latent
growth modeling is widely used for analyzing variable trends over time, particularly
in emotion and personality research [51, 52].

7 Results
7.1 Descriptive statistics: emotion map and word cloud

Figure 1 plots the valence and arousal scores of all 462,287 posts, comparing the
emotional features of posts published on days with and without NSSI disclosures.
We classified the posts as positive (negative) when their valence scores were above
0 (below 0) and as high arousal (low arousal) when their arousal scores were above
4 (below 4) (see [39]).

The overall distribution of emotions in the dataset covered both positive and nega-
tive areas of the valence—arousal plane (see Fig. 1). Consistent with previous studies,
we found significant quadratic relationships between valence and arousal on both
NSSI non-disclosure days (F, ;55 375 = 9-221%10% p < 0.001; R’ = 0.287) and disclo-
sure days (F, ;993 = 7.922%10% p < 0.001; R’ = 0.288). This finding indicates that

°  Days with NSSI disclosure

®  Days without NSSI disclosure

Arousal

0
Valence

Fig. 1 Emotion map of 462,287 posts from 398 users. NSSI=non-suicidal self-injury; 3,906 posts were
published on days with NSSI disclosure, while 458,381 posts were published on days without NSSI
disclosure. The marginal density plots were created along the axes to visualize the distribution of emo-
tions at varying levels of valence and arousal

@ Springer



Journal of Computational Social Science (2026) 9:7 Page 7 of 17 7

increases in valence in both directions (positive and negative) were accompanied by
a rising level of arousal [38, 53].

For the 458,381 posts published on days without NSSI disclosure, emotions were
scattered across the plane. These posts tended to be accompanied by low arousal
(68.1% for arousal< 4; 12.2% for arousal> 4) and were more positive (45.2% for
valence> 0) than negative (35.1% for valence < 0). Additionally, we classified 79,478
(17.3%) posts as neutral (valence = 0, arousal = 0).

In contrast, the 3,906 posts published on NSSI disclosure days revealed a more
negative distribution of emotions (42.8% for valence < 0; 41.7% for valence> 0) with
a higher proportion of lower arousal (74.1% for arousal< 4; 10.3% for arousal> 4)
than on non-disclosure days. Moreover, disclosure days had a lower proportion
(13.2%) of neutral posts (valence = 0, arousal = 0) than NSSI non-disclosure days
(17.3%). These findings suggest that, compared with non-disclosure days, individu-
als expressed more negative emotions and lower arousal on days when they disclosed
NSSI behavior on social media.

To further explore the higher prevalence of emotional (i.e., non-neutral), and espe-
cially negative, characteristics and linguistic patterns of posts on NSSI disclosure
days, we generated two word clouds. Figure 2A presents the original Chinese words,
and Fig. 2B presents their English translations. Both visualizations present the same
100 most common words in posts published on NSSI disclosure days, along with
their valence and arousal scores from CSLI 2.0. A larger font size indicates a higher
frequency of use. As the Chinese words and their English equivalents differed in
length, the positions of the words varied between the two visualizations.

The most common word in posts published on NSSI disclosure days was “4f”
(good/really), which appeared 311 times with a valence score of 2.143 and an arousal
score of 2.714. In these disclosure posts, “{F”” was frequently paired with “48” (want
to), with the combination “4748” (really want to) appearing 181 times, indicating a
strong urge or desire. To investigate why more negative emotions were expressed
on NSSI disclosure days than on non-disclosure days, we examined the use of the
word “4E” (death), which appeared 250 times with a valence score of —3.000 and an
arousal score of 3.714. The word “4t” was frequently associated with verbs express-
ing desire or intention; related terms such as “A8%E” (want to die) and “Z3E” (go to
die) appeared a total of 98 times. This characteristic usage of words and expressions
related to death and suicide may contribute to the observed high frequency of nega-
tive valence and low arousal scores in posts on NSSI disclosure days.

8 Emotional trajectory preceding NSSI disclosure

To visualize the emotional trajectory preceding the Weibo users’ disclosure of NSSI,
we aggregated their posts on a daily basis, designating the day of NSSI disclosure as
Day 0, the previous day as Day -1, and so on. Using these aggregated data, we aver-
aged the users’ daily valence and arousal scores to generate the arousal and valence
scores for each date. For comparison, we specifically divided valence into positive
and negative emotions.
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Fig.2 Word cloud of the 100 most frequently used words in posts published on NSSI disclosure days.
The English word cloud is translated from Chinese. From the 100 words presented in the word cloud,
60 are documented in CSLI 2.0 with their corresponding valence and arousal. “48%8” was translated as
“Cat my hand” to reflect its homophonic relationship with “Cut my hand.”

Figure 3A illustrates the daily trajectory of negative and positive valence in the
month leading up to the NSSI disclosures of the Weibo users included in the analysis,
with magnitudes ranging from 0 to 4. While the valence trajectory fluctuated, these
users tended to express negative emotions in their posts, as their scores for nega-
tive emotions were consistently higher than those for positive emotions. Notably,
we observed a continuous rise in the intensity of negative emotions in the four days
immediately preceding NSSI disclosure. In contrast, we observed no clear pattern for
positive emotions in the four days immediately preceding NSSI disclosure.

Similarly, Fig. 3B depicts the daily trajectory of arousal, which also exhibited a
fluctuating pattern. Notably, we observed more pronounced changes near NSSI dis-

@ Springer



Journal of Computational Social Science

(2026) 9:7

Page 9 of 17 7

A

120

L15

105

Degree of Valence

095

090

0.85

0.80

-30-29-28 -27-26 -25-24 -23-22 -21-20 -19-18 -17-16 -15-14 -13-12-11-10 9 -8 -7 -6 -5

Relative date to NSSI disclosures

Degree of Arousal
g

-30-29-28 -27-26 -25-24 -23-22 -21-20 -19-18 -17-16 -15-14 -13-12-11-10 -9 -8 -7 -6 -5 4 -3

Relative date to NSSI disclosures

Valence
—e— Positive
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Fig.3 Daily valence and arousal trajectories in the month preceding the Weibo users’ NSSI disclosures.
The shaded areas indicate the 95% bootstrap confidence ribbons: light red indicates negative emotions,
blue indicates positive emotions, and gray indicates emotional arousal

closures than at other times: a dramatic decline in arousal occurred from Day -8 to
Day -4, followed by a rapid increase that peaked on Day -1.

To test the one-month trajectory, we conducted hierarchical linear modeling with
the number of posts and registration time as control variables [44]. We found that
both positive and negative emotions increased during the month preceding NSSI
disclosure. However, we identified no significant pattern for arousal across the one-

month period (see Appendix B).
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9 Short-term emotional trajectory: latent growth modeling

As previous studies have noted, NSSI may be associated with short-term emotional
changes [54]. Using least squares regression via the R package bep [55], we identi-
fied a turning point in both negative emotions and arousal corresponding to a notable
low on Day -4, as illustrated in Fig. 3. We thus investigated changes in emotional
states four days before (highlighted in the vertical yellow shaded bands) and after
NSSI disclosure, using symmetric latent growth models for comparative analysis. We
applied both linear and non-linear latent growth models to examine these short-term
emotional patterns. Specifically, the mean slope in the pre- and post-NSSI models
represented emotional changes (a positive slope indicated an increase and a negative
slope indicated a decrease).

Table 1 presents the results of the latent growth models for arousal, negative emo-
tions, and positive emotions as outcome variables. We evaluated model fit using the
root mean square error of approximation (RMSEA), comparative fit index (CFI),
Tucker-Lewis index (TLI), and standardized root mean squared residual (SRMR).
CFI and TLI values greater than .90, RMSEA values below .06, and SRMR values
below .08 indicate excellent fit [56].2

9.1 Arousal

First, we tested the pre-NSSI models. Both linear (RMSEA = 0; CFI= 1; TLI = 1;
SRMR = 0.051) and non-linear (RMSEA = 0; CFI = 1; TLI = 1; SRMR = 0.034)
models demonstrated excellent fit. The results suggest that the level of arousal exhib-
ited a significant linear increase over the four days preceding NSSI (8 = 0.317,
p = 0.014), while we observed no significant non-linear pattern (p = 0.091). Next,
we tested the post-NSSI models. The non-linear model demonstrated a good fit
(RMSEA = 0.019; CFI=0.911; TLI= 0.823; SRMR = 0.039), while the linear model
exhibited a poor fit (RMSEA = 0.043; CFI = 0.257; TLI = 0.071; SRMR = 0.061).
However, we detected no significant pattern in either the linear (p = 0.398) or non-
linear (p = 0.955) model. Comparing the non-linear models before and after NSSI,
we observed a significant difference in intercepts (diff; = — 1.080; p = 0.049). This
indicated that the intercept for the pre-NSSI model was considerably lower than that
for the post-NSSI model. This finding implies that the level of arousal on Day 0 was
significantly higher than that on Day -4, further substantiating the observed increase
in arousal in the four days preceding NSSI disclosure.

9.2 Negative emotions
In the pre-NSSI period, the non-linear model showed a better fit (RMSEA= 0; CFI= 1,

TLI= 1; SRMR= 0.039) than the linear model (RMSEA= 0.022; CFI= 0.572;
TLI= 0.465; SRMR= 0.054). These results suggest that negative emotions exhib-

2In cases where the model is saturated (CFI=1; RMSEA=0), greater emphasis should be placed on assess-
ing the significance of the path coefficients rather than the model fit indices when comparing models [57,
58].
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Table 1 Estimation of Short-term Emotional Trajectory Before and After NSSI Disclosure

Measure Pre-NSSI Post-NSSI

Linear Non-linear Linear Non-linear
Arousal
Mean intercept 1.751%%* 1.429%* 2.682%** 2.662%**
Mean slope 0.317* 0.878 —0.102 —0.026
Mean quadratic slope -0.130 —0.021
Intercept on registration time -0.018 0.000 —0.041 - 0.039
Intercept on post number 0.125%*%* 0.146%* 0.041 0.041
Slope on registration time —0.003 —0.040 0.015 0.009
Slope on post number —0.034%* — 0.066 —0.002 — 0.004
Quadratic slope on registration time 0.009 0.002
Quadratic slope on post number 0.007 0.000
Negative emotions
Mean intercept 0.802%** 0.427 1.482%%* 1.302%%*
Mean slope 0.155 0.805%* -0.077 —0.016
Mean quadratic slope —0.149 —0.021
Intercept on registration time -0.027 - 0.018 —-0.039 -0.032
Intercept on post number 0.062* 0.104** 0.004 0.023
Slope on registration time —0.001 - 0.014 —0.020 —0.054
Slope on post number -0.014 —0.089* 0.023 0.037
Quadratic slope on registration time 0.003 0.014
Quadratic slope on post number 0.017* - 0.007
Positive emotions
Mean intercept 0.283 0.545 1.190%** 1.115%**
Mean slope 0.175* —0.283 —0.143 0.041
Mean quadratic slope 0.105 —0.048
Intercept on registration time 0.005 —0.011 —0.045* —0.039
Intercept on post number 0.083*** 0.065* 0.018 0.023
Slope on registration time —0.009 0.020 0.014 —0.005
Slope on post number -0.013 0.018 0.005 - 0.003
Quadratic slope on registration time - 0.007 0.005
Quadratic slope on post number - 0.007 0.002

NSSI=non-suicidal self-injury; Pre-NSSI=four days before NSSI; Post-NSSI=four days after NSSI.
*p < 0.05. *¥¥*p < 0.01. **¥p < 0.001.

ited a significant non-linear increase over the four days preceding NSSI disclosure
(f=0.805; p= 0.032), while we detected no significant linear pattern for the change
in negative emotions (p = 0.131). In the post-NSSI period, both linear (RMSEA=0;
CFI=1; TLI=1; SRMR=0.031) and non-lincar (RMSEA= 0; CFI= 1; TLI= I,
SRMR = 0.052) models demonstrated an excellent fit. However, we observed no sig-
nificant pattern for the change in negative emotions after NSSI disclosure for either
linear (p = 0.537) or non-linear (p = 0.965) models. A comparison of the pre- and
post-NSSI non-linear models revealed that the intercept of the pre-NSSI model was
significantly lower than that of the post-NSSI model (diff;, = — 0.874; p = 0.042). This
implies that negative emotions were significantly higher on Day 0 than during the
previous four days, further supporting the finding that negative emotions increased in
the four days preceding NSSI disclosure.

@ Springer



7 Page 12 of 17 Journal of Computational Social Science (2026) 9:7

9.3 Positive emotions

In the pre-NSSI period, the linear model (RMSEA= 0.044; CFI= 0.683;
TLI= 0.604; SRMR = 0.068) showed an acceptable fit, while the non-linear model
(RMSEA= 0.056; CFI= 0.682; TLI= 0.365; SRMR= 0.062) showed a poor fit.
Positive emotions exhibited a significant linear increase over the four days preceding
NSSI disclosure (f = 0.175; p = 0.022), but we detected no significant non-linear
pattern for the change in positive emotions (p = 0.349). In the post-NSSI period, both
linear (RMSEA= 0; CFI= 1; TLI= 1; SRMR = 0.043) and non-linear (RMSEA= 0;
CFI= 1; TLI= 1; SRMR= 0.028) models demonstrated excellent fit. We observed a
marginally significant pattern for the linear change in positive emotions (f= — 0.143;
p= 0.062) after NSSI disclosure but not for the non-linear model (p = 0.887). This
implies that individuals experienced a linear drop in positive emotions after NSSI
disclosure.

A comparison between the pre- and post-NSSI linear models further supported this
conclusion. The slope of the pre-NSSI model (= 0.175; p = 0.022) was significantly
greater (diffy = 0.318; p = 0.003) than that of the post-NSSI model (8 = — 0.143;
p = 0.062), suggesting a decrease in positive emotions after NSSI disclosure com-
pared with before NSSI disclosure. At the same time, the intercept of the pre-NSSI
model was significantly lower than that of the post-NSSI model (diff,= — 0.908;
p = 0.001), suggesting that positive emotions were significantly higher on Day 0 than
in the previous four days, further supporting the conclusion that positive emotions
increased before NSSI disclosure.

10 Discussion

Using a lexicon-based sentiment analysis approach, this study revealed that individu-
als’ emotional arousal, positive emotions, and negative emotions all increased during
the four days preceding their NSSI disclosure on Weibo. The increase in negative
emotions was the most significant. Furthermore, we found that positive emotions
were lower in the post-NSSI period than in the pre-NSSI period, but we identified no
other pattern for the post-NSSI emotional trajectory.

Our findings of increasing negative emotions and arousal during the pre-NSSI
period echo past studies. NSSI behavior may be motivated by a combination of
heightened negative emotions and emotional arousal, indicating that such behavior
is more likely to occur following elevated levels of these emotional states. Empiri-
cal support for the hypothesis that individuals experience significant negative emo-
tions and emotional arousal before engaging in NSSI behavior (the affect-regulation
model; see [7, 8]) is well-documented. Self-reported diary studies have similarly
found increasing negative emotions pre-NSSI [22-25, 59]. In terms of arousal, self-
injurers have been found to suffer from higher levels of arousal under negative stimu-
lation, using both physiological [60] and self-report assessment [61].

However, contrary to the hypothesis that negative emotions and arousal should
decrease following NSSI, our findings indicate a lack of reduction in negative emo-
tions and arousal post-NSSI. Additionally, our findings indicate a decrease in posi-
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tive emotions following NSSI. This contrasts with the sensation-seeking model [9],
which suggests that NSSI serves to generate desired emotions such as excitement and
exhilaration.

Regarding the prevailing assumption of emotional experience after NSSI, the dis-
crepancies between our findings and those of previous studies do not necessarily mean
that NSSI brings no reduction (improvement) in negative (positive) emotions. Rather,
our findings may highlight the potential interpersonal help-seeking functions associated
with the online expression of NSSI, such as communicating distress, fostering feel-
ings of connection, and obtaining support [62—64]. First, individuals may continue to
express their suffering rather than revealing their relief after engaging in NSSI to elicit
sympathy and obtain desired social reactions, which are key benefits of this behavior
[65]. The evidence indicates that the suffering of vulnerable individuals (e.g., crying
babies, hospitalized persons, or those with physical disabilities) effectively elicits com-
passion [66, 67]. Second, individuals may avoid revealing their positive emotions after
engaging in NSSI if they believe society will perceive them negatively. Given the social
stigma surrounding NSSI in China, where it is viewed as deviant and immoral [68,
69], happiness derived from this behavior may be perceived as “evil joy.” Lastly, it is
also possible that emotions fluctuate immediately after engaging in NSSI [25, 32] but
diminish rapidly in subsequent days, which our analysis of social media data failed to
capture. These hypotheses warrant further exploration.

This study has several limitations. First, we used a lexicon-based sentiment analy-
sis approach. This method may not be as effective and accurate for scoring senti-
ments as other machine learning algorithms, such as support vector machines [70]
or generative Al-based sentiment classification [71]. While machine learning algo-
rithms commonly classify positive and negative sentiments, their effectiveness in
distinguishing high/low arousal in texts remains unverified. Thus, we chose to use the
lexicon-based approach with CSLI 2.0 [39], which was developed based on Weibo
text, the same platform from which we sourced our data. Future studies could apply
other algorithms to pursue better performance in sentiment detection.

Second, our study focused on female Weibo users who actively disclosed their
NSSI behavior. Future studies should expand the study scope to cover different soci-
etal segments to better understand the role of emotion in the initiation and continua-
tion of the NSSI phenomenon.
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